2012年度・秋学期

発表記録
2012/09/26松本松本
2012/10/03三浦岡野
2012/10/10岡野
2012/10/17松本三浦三浦
2012/10/24三浦岡野岡野
松本
2012/10/31伊達三浦
2012/11/07松本岡野
2012/11/14
2012/11/28三浦

発表内容

テキスト:Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, Oxford University Press

Chapter 2:General Properties of Schemes
§2.3:Schemes
§2.3.1Definition of Schemes and Examples松本
§2.3.2Morphism of Schemes松本
§2.3.3Projective Schemes三浦
§2.3.4Noetherian Schemes, Algebraic Varieties
§2.4:Reduced and Integral Schemes
§2.4.1Reduced Schemes岡野
§2.4.2Irreducible Components
§2.4.3Integral Schemes岡野
§2.5:Dimension
§2.5.1Dimension of schemes
§2.5.2The case of Noetherian schemes松本
§2.5.3Dimension of Algebraic Varieties
Chapter 3:Morphisms and base change
§3.1:The technique of base change
§3.1.1Fibered product三浦
§3.1.2Base change三浦三浦
§3.2:Application to Algebraic Varieties
§3.2.1Morphisms of Finite Type岡野
§3.2.2Algebraic Varieties and extension of the base field岡野
§3.2.3Points with values in an extension of a base field松本
§3.2.4Frobenius
§3.3:Some global properties of morphisms
§3.3.1Separated Morphisms伊達
§3.3.2Proper Morphisms三浦
§3.3.3Projective Morphisms
Chapter 4:Some Local Properties
§4.1:Normal schemes
§4.1.1Normal schemes and extensions of regular functions岡野
§4.3:Flat morphisms and smooth morphisms
§4.3.2Étale morphisms三浦

2012年度・春学期


発表記録
2012/04/13岡野
2012/04/20Dumont
2012/04/27谷口
2012/05/04みどりの日
2012/05/11岡野
2012/05/18Dumont
2012/05/25慶應延世研究集会
2012/06/01お休み
2012/06/08岡野
2012/06/15岡野
2012/06/22Dumont
2012/06/29谷口
谷口
岡野
2012/07/06Dumont
2012/07/13岡野
2012/07/11Dumont

発表内容

テキスト:J.-P. Serre, Local Fields, GTM 67, Springer

準備
1準備岡野
2準備Dumont
Chapter VII : Basic Facts
§7.1$G$-modules谷口
§7.2Cohomology
§7.3Computing the Cohomology via Cochains岡野
§7.4Homology
§7.5Change of GroupDumont
§7.6An Exact Sequence
§7.7Subgroup of Finite Index谷口谷口
§7.8Transfer岡野
Chapter VIII : Cohomology of Finite Groups
§8.1The Tate Cohomology Groups岡野
§8.2Restriction and CorestrictionsDumont
§8.3Cup Products
§8.4Herbrand Quotient in the Cyclic of Prime Order Case岡野
§8.5Cohomology of Finite Cyclic Groups, Herbrand QuotientDumont
Chapter IX : Theorems of Tate and Nakayama
§9.1$p$-GroupsDumont
§9.2Sylow Subgroups
§9.3Induced Modules: Cohomologically Trivial Modules岡野
§9.4Cohomology of a $p$-Group
Final Talk : «The Power Reciprocity Law and its application to the proof
of the Eisenstein Reciprocity Law»
Dumont