発表記録 | ||||
---|---|---|---|---|
2012/09/26 | 松本 | 松本 | ||
2012/10/03 | 三浦 | 岡野 | ||
2012/10/10 | 岡野 | |||
2012/10/17 | 松本 | 三浦 | 三浦 | |
2012/10/24 | 三浦 | 岡野 | 岡野 | |
松本 | ||||
2012/10/31 | 伊達 | 三浦 | ||
2012/11/07 | 松本 | 岡野 | ||
2012/11/14 | ||||
2012/11/28 | 三浦 |
テキスト:Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, Oxford University Press
Chapter 2:General Properties of Schemes | ||
---|---|---|
§2.3:Schemes | ||
§2.3.1 | Definition of Schemes and Examples | 松本 |
§2.3.2 | Morphism of Schemes | 松本 |
§2.3.3 | Projective Schemes | 三浦 |
§2.3.4 | Noetherian Schemes, Algebraic Varieties | |
§2.4:Reduced and Integral Schemes | ||
§2.4.1 | Reduced Schemes | 岡野 |
§2.4.2 | Irreducible Components | |
§2.4.3 | Integral Schemes | 岡野 |
§2.5:Dimension | ||
§2.5.1 | Dimension of schemes | |
§2.5.2 | The case of Noetherian schemes | 松本 |
§2.5.3 | Dimension of Algebraic Varieties | |
Chapter 3:Morphisms and base change | ||
§3.1:The technique of base change | ||
§3.1.1 | Fibered product | 三浦 |
§3.1.2 | Base change | 三浦・三浦 |
§3.2:Application to Algebraic Varieties | ||
§3.2.1 | Morphisms of Finite Type | 岡野 |
§3.2.2 | Algebraic Varieties and extension of the base field | 岡野 |
§3.2.3 | Points with values in an extension of a base field | 松本 |
§3.2.4 | Frobenius | |
§3.3:Some global properties of morphisms | ||
§3.3.1 | Separated Morphisms | 伊達 |
§3.3.2 | Proper Morphisms | 三浦 |
§3.3.3 | Projective Morphisms | |
Chapter 4:Some Local Properties | ||
§4.1:Normal schemes | ||
§4.1.1 | Normal schemes and extensions of regular functions | 岡野 |
§4.3:Flat morphisms and smooth morphisms | ||
§4.3.2 | Étale morphisms | 三浦 |
発表記録 | |
---|---|
2012/04/13 | 岡野 |
2012/04/20 | Dumont |
2012/04/27 | 谷口 |
2012/05/04 | みどりの日 |
2012/05/11 | 岡野 |
2012/05/18 | Dumont |
2012/05/25 | 慶應延世研究集会 |
2012/06/01 | お休み |
2012/06/08 | 岡野 |
2012/06/15 | 岡野 |
2012/06/22 | Dumont |
2012/06/29 | 谷口 |
谷口 | |
岡野 | |
2012/07/06 | Dumont |
2012/07/13 | 岡野 |
2012/07/11 | Dumont |
テキスト:J.-P. Serre, Local Fields, GTM 67, Springer
準備 | ||
---|---|---|
1 | 準備 | 岡野 |
2 | 準備 | Dumont |
Chapter VII : Basic Facts | ||
§7.1 | $G$-modules | 谷口 |
§7.2 | Cohomology | |
§7.3 | Computing the Cohomology via Cochains | 岡野 |
§7.4 | Homology | |
§7.5 | Change of Group | Dumont |
§7.6 | An Exact Sequence | |
§7.7 | Subgroup of Finite Index | 谷口・谷口 |
§7.8 | Transfer | 岡野 |
Chapter VIII : Cohomology of Finite Groups | ||
§8.1 | The Tate Cohomology Groups | 岡野 |
§8.2 | Restriction and Corestrictions | Dumont |
§8.3 | Cup Products | |
§8.4 | Herbrand Quotient in the Cyclic of Prime Order Case | 岡野 |
§8.5 | Cohomology of Finite Cyclic Groups, Herbrand Quotient | Dumont |
Chapter IX : Theorems of Tate and Nakayama | ||
§9.1 | $p$-Groups | Dumont |
§9.2 | Sylow Subgroups | |
§9.3 | Induced Modules: Cohomologically Trivial Modules | 岡野 |
§9.4 | Cohomology of a $p$-Group | |
Final Talk : «The Power Reciprocity Law and its application to the proof of the Eisenstein Reciprocity Law» | Dumont |