2012年度・秋学期

発表記録
2012/09/28山田
2012/10/05平川
2012/10/12川口
2012/10/19山田
2012/10/26平川
2012/11/02川口
2012/11/09山田
2012/11/16平川
2012/11/30川口
2012/12/07山田

発表内容

テキスト:J.-P. Serre, Local Fields, GTM 67, Springer

Cohomology論の準備
準備Tate Cohomology, Hilbert Theorem 90, Brauer群山田
Chapter XII:Brauer Group of a Local Field
§12.1Existence of an unramified Splitting field平川
§12.2Existence of an unramified Splitting field (Direct Proof)
§12.3Determination of the Brauer group
Chapter XIII:Local Class Field Theory
§13.1The Group $\widehat{\mathbb{Z}}$ and its cohomology川口
§13.2Quasi-Finie fields
§13.3The Brauer Group山田
§13.4Class Formation
§13.5Dwork's Theorem平川
Chapter XIV:Local Symbols and Existence Theorem
§14.1General Definition of Local Symbols平川
§14.3Computations of the Symbol $(a,b)_v$ for the Field $\mathbb{Q}_p$川口
§14.5The symbols $[a,b)$山田
§14.6The Existence Theorem
§14.7Example: The maximal abelian extension of $\mathbb{Q}_p$
Chapter XV:Ramification
§15.1Kernel and Cokernel of an Additive (resp. Multiplicative) Polynomial平川
§15.2The Norm Groups
§15.3Explicit Computations
Chapter XI:Class Formation
§11.1The Notion of Formation川口
§11.2Class Formations
§11.3Fundamental Classes and Reciprocity Isomorphisms
§11.4Abelian Extensions and Norm Groups
§11.5The Existence Theorem

2012年度・春学期

発表記録
2012/04/10川口伊達
2012/04/17山田平川
2012/04/24松本伊達
2012/05/08山田
2012/05/15平川松本
2012/05/22山田
2012/05/29川口伊達
2012/06/05東京数論幾何週間
2012/06/12松本平川
2012/06/19山田川口
2012/06/26松本
2012/07/03伊達平川
山田
2012/07/10川口伊達
2012/07/17平川山田
2012/07/31川口
2012/08/01平川山田

発表内容

テキスト:J.-P. Serre, Local Fields, GTM 67, Springer

Chapter I : Discrete Valutaion Rings and Dedekind Domains
§1.1Definition of Discrete Valutaion Ring川口
§1.2Characterizations of Discrete Valutaion Rings伊達
§1.3Dedekind Domains山田
§1.4Extensions平川
§1.5The Norm and Inclusion Homomorphism松本
§1.6Example: Simple Extensions伊達
§1.7Galois Extensions川口
§1.8Frobenius Substitution山田
Chapter II : Completion
§2.1Absolute Values and the Topology Defined by a Discrete Valuation平川
§2.2Extensions of a Complete Field松本
§2.3Extension and Completion伊達
§2.4Structure of Complete Discrete Valutaion Rings I
Equal Characterstic Case
山田松本
§2.5Structure of Complete Discrete Valutaion Rings II
Unequal Characterstic Case
平川
§2.6Witt Vectors山田
Chapter III : Discriminant and Different
§3.1Lattices川口
§3.2Discriminant of a Lattice with Respect to Bilinear Form
§3.3Discriminant and Different of a Separable Extension伊達
§3.4Elementary Properties of the Different and Discriminant
§3.5Unramified Extensions松本
§3.6Computation of Different and Discriminant平川
§3.7A Differential Characterisation of the Different
Chapter IV : Ramification Groups
§4.1Definition of the Ramificaion Groups; First Properties 山田
§4.2The Quotients $G_i/G_{i+1}$, $i \geq 0$川口伊達
§4.3The Functions $\phi$ and $\psi$; Herband's Theorem平川
§4.4Example: Cyclotomic Extensions of the Field $\mathbb{Q}_p$山田
Chapter V : The Norm
§5.1Lemmas川口
§5.2The Unramified Case
§5.3The Cyclic of Prime Order Totally Ramified Case松本
§5.4Extension of a Residue Field in a Totally Ramified Extension平川
§5.5Multiplicative Polynomials and Additive Polynomials山田
§5.6The Galois Totally Ramified Case
§5.7Application: Proof of the Hasse-Arf Theorem